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Abstract
KAPPA is a type system for safe concurrent object-oriented program-
ming using reference capabilities. It uses a combination of static
and dynamic techniques to guarantee data-race freedom, and, for a
certain subset of the system, non-interference (and thereby determin-
istic parallelism). It combines many features from previous work on
alias management, such as substructural types, regions, ownership
types, and fractional permissions, and brings them together using a
unified set of primitives.

In this extended abstract we show how KAPPA’s capabilities
express variations of the aforementioned concepts, discuss the main
insights from working with KAPPA, present the current status of
the implementation of KAPPA in the context of the actor language
Encore, and discuss ongoing and future work.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Type systems, Language Implementation, Capabilities,
Traits, Concurrency, Object-Oriented

1. Introduction
The last few decades have seen considerable interest in type systems
for controlling aliasing and interference, ranging from approaches
that constrain the structure of a program, like different flavours
of ownership types and universe types, via linear types and type
qualifiers, to more descriptive techniques like effect systems.

While reasoning about aliasing in a sequential setting is impor-
tant for functional correctness, the increasing ubiquity of multi-core
and many-core architectures makes controlling aliasing even more
important. An unfortunate scheduling of two threads sharing muta-
ble state could cause data-races, which leads to problems like lost
updates, corrupted data and unwanted non-determinism.

This paper overviews the KAPPA type system for concurrent and
parallel programming, how it leverages a capability-based way of
thinking, and how it integrates with object-oriented programming.
We discuss the current stable KAPPA system, the current and on-
going work on extending KAPPA, and finally dare to dream about
the future.

2. KAPPA and the Past
In this section we introduce KAPPA and explain how it expresses
concepts from a wide variety of previous work on alias management.
A more thorough treatise of the system can be found in a current

1 This work was partially funded by the Swedish Research Council project
Structured Aliasing, the EU project FP7-612985 Upscale (http://www.
upscale-project.eu), and the Uppsala Programming Multicore Archi-
tectures Research Centre (UPMARC).

paper to be presented at ECOOP’16 [12]. Some initial sketches from
a previous IWACO paper are also available [10].

The starting point for KAPPA is the unification of references
and capabilities. A capability is a token that grants access to a
particular resource. In KAPPA these resources are objects, parts
of objects, or entire object aggregates (an object containing other
objects). Capabilities present an alternative approach to tracking and
propagating computational effects to check interference: capabilities
assume exclusive access to their governed resources, only permit
reading, or follow some protocol that allows resolving potential
conflicts. Thus, holding a capability implies the right to use it
fully without fear of uncontrolled data-races. This importantly shifts
reasoning from use-site of a reference to its creation-site. Granting
and revoking capabilities corresponds to creating and destroying
references.

2.1 KAPPA in a Nutshell
In KAPPA, capabilities are introduced via traits. A trait can be
thought of as an abstract class whose fields are abstract and must
be provided by a concrete subclass. Another way to think about
traits is as Java-style interfaces that can name fields and provide
implementations of methods. The following code defines two traits
for reading and incrementing an integer field:

trait Inc
require var cnt : int
def inc() : void

this.cnt = this.cnt + 1

trait Get
require val cnt : int
def get() : int

return this.cnt

Both traits require a field cnt, meaning that if they are included by a
class that provides such a field, the traits will provide their respective
methods. A class that does not provide all the required fields of its
traits does not typecheck. Note the difference between var fields
which may be updated, and val which may not.

A KAPPA capability is a trait annotated with a mode, that controls
how the capability gains exclusive access to the underlying object.
For example, linear Inc is a capability that gives access to the inc
method of its governed resource. The linear keyword means that
it must be treated linearly (i.e., never have more than one alias). It
can therefore only ever be accessed by one thread at a time. KAPPA
provides a number of modes:

linear – the capability must be treated linearly;

thread – the capability can be aliased freely, but aliases are
restricted to a single thread;
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locked – interactions with the capability will be wrapped in
acquiring and releasing of a lock;

read – the capability only provides reading operations;

subordinate – the capability is strongly encapsulated inside some
object and inherits protection from data-races from it; and

unsafe – the capability provides no protection of its own, i.e., a
normal reference in most object-oriented languages.

The linear and thread modes are exclusive modes as such capa-
bilities are always exclusive to a single thread. (Although linear
capabilities might be transferred between threads, at any point in
time at most one thread can access it.) The locked and read modes
are safe modes as they are always safe to share between threads,
either because accesses will be serialised by using locks, or because
all provided operations will only perform reads on the underlying
object.

The subordinate mode is special in the sense that it doesn’t
provide any protection mechanisms of its own, but relies on being
encapsulated by some other capability. We call capabilities that can
provide protection for other capabilities dominating capabilities.

Unsafe capabilities can either be thought of as objects that have
no automatic protection of their own and must therefore e.g., be
manually locked before usage, or as an escape hatch from the type
system when some aliasing pattern known to be safe cannot be
expressed or when data-races can be allowed. So far we have chosen
the former solution, requiring a Java-style sync block (in which the
unsafe capability can be viewed as a locked capability).

As usual in a trait-based system, KAPPA constructs classes and
types by composing traits, or more precisely capabilities. There are
two forms of composition: disjunction (⊕) and conjunction (⊗). If
A and B are capabilities, their disjunction A⊕ B provides the disjoint
union of the methods of A and B and requires the union of their field
requirements. Intuitively, the disjunction A ⊕ B can be used as an A
or a B, but not both at the same time (i.e., not in parallel).

The conjunction A ⊗ B also has the same requirements and
provides the same methods as its constituents, but is only well-
formed if A and B do not share mutable state which is not protected
by concurrency control (in other words, a shared field must be a val
field containing a safe capability). This means that A ⊗ B allows A
and B to be used in parallel.

The following snippet declares a linear counter class using the
traits defined earlier:

class LinearCounter = linear Inc ⊕ read Get
var cnt : int

The class LinearCounter provides the field cnt required by the
included traits. Note that the composition Inc ⊗ Get is not allowed
as the two traits share the mutable field cnt – concurrent calls to
inc() and get() would race on cnt.

Since LinearCounter is composed from a linear capability,
any variable of this type must also be treated linearly. Through
upcasting, the mutating Inc capability can be forgotten, leaving
only read Get which allows sharing the underlying object across
threads without dynamic concurrency control (the remaining read
capability only performs reads).

The same traits can be used to declare a counter class that uses
locks for protection instead:

class SynchedCounter = locked Inc ⊕ read Get
var cnt : int

Since all sub-capabilities of SynchedCounter are safe, the full
type is also safe, and a variable of this type is safe to share across
threads. However, since the Get capability shares state with the
Inc capability, calls to get must also be synchronized via locking.
This can be implemented using a readers-writer lock, with a static

guarantee that readers will not write (as a read capability may only
use val fields).

To exemplify conjunctive capabilities, the following snippet
implements a pair of counters:

trait Fst
require var fst : LinearCounter
def getFst() : int

return this.fst
def incFst() : void

this.fst.inc()

trait Snd
require var snd : int
... // symmetric to Fst

class LinearPair = linear Fst ⊗ linear Snd
var fst : int
var snd : int
As Fst and Snd do not share any mutable state, their conjunc-

tion is well-formed, and a capability of type LinearPair can be
unpacked into its constituents:

var p = new Pair(2,3);
let (fst : Fst, snd : Snd) = consume p; // 1
finish{

async{fst.incFst()}
async{snd.incSnd()}

}
p = consume fst ⊗ consume snd; // 2

At (1) the Pair is unpacked into two capabilities fst and snd. The
consume operation denotes a destructive read which nullifies its
target—this is required (in general) to maintain uniqueness of linear
capabilities. Note that fst and snd are aliases of the same object,
but that operating on them in parallel is safe. At (2) the original
capability is restored.

This section gave a brief overview of some of the features of
KAPPA. A more thorough presentation, including more examples,
can be found in our ECOOP’16 paper [12]. The following sections
will expand on the presented features and show how they can be
understood by comparing to related work.

2.2 Subordination and Ownership
Subordinate capabilities denote resources which are safe to access
because all references to them are hidden inside some other capa-
bility. The subordinate capability thus inherits the protection of the
other capability. Capabilities which are able to offer protection for
subordinate capabilities are called dominating capabilities. Some
capabilities are neither subordinate nor dominating – for example, a
read capability may not contain any subordinate state.

The subordinate mode is similar to rep and owner in ownership
types, but KAPPA does not emphasise nesting strongly. In its most
simple form, the heap is shallowly partitioned into a set of dominat-
ing or read capabilities1 and their subordinate state. It is however
possible to form combinations of subordinate and dominating capa-
bilities, and thereby create deeper levels of nesting. For example, a
capability linear ⊕ subordinate is unaliased, and may additionally
not be transferred outside of its enclosing aggregate.

In KAPPA, a reference from object o1 to object o2 requires that
(1) o2 is some capability which knows how to handle concurrent
accesses, or (2) o2 is subordinate state inside the same enclosure as
o1 (including the case where o1 “owns” o2). Note that this precludes
outgoing references, i.e., if o1 is subordinate to o3 and o3 and o2 are
siblings. This is required to preserve data-race freedom.

1 Using ownership types parlance, these capabilities are in world
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Consider a situation as depicted in
Figure 1. Notably, threads (here, T1 and
T2) may operate in C and D concur-
rently, e.g., some thread enters D and
then forks off a task that contains C. Al-
lowing outgoing references would allow
the thread in C to follow the reference in
A to B, and the thread in D to access B—
breaking data-race freedom. Note: if B
is a dominating capability, the reference
is legal under (1) above.

2.3 Subordination and Trait-based Reuse
An important property of KAPPA is that the implementor of a trait
can assume that the executing thread has exclusive access to the
required resources. This property allows the same trait to be given
different modes for different usages, which improves trait-based
reuse for different concurrency scenarios.

With the exception of the read mode, the key restriction that
allows a trait to be given any mode is that methods do not assign this
outside of the enclosing aggregate. This is achieved by typechecking
traits without manifest modes with this as a subordinate capability.
This means that this may only be passed to methods of capabilities
that are also subordinate, and only returned from a method if the
caller is subordinate.

It is reasonable to ask whether or not this default is too restric-
tive. Vitek and Bokowski [22] show that 84–95% of methods in
java.util and java.awt (JDK 1.1) are anonymous methods,
meaning that they only use this to access instance variables directly.
Wrigstad’s et al. Loci [23] uses similar restrictions and successfully
applies its tool to a 50 KLOC Java program without encounter-
ing problems due to leaking this. This suggests that defaulting to
subordinate is reasonable. If some application requires this to be
leaked outside of its enclosure, adding a manifest mode ensures the
concurrency control necessary to avoid potential data-races (at the
cost of disallowing the trait to be given any mode at use-site).

2.4 Linearity and Borrowing
The linear capabilities are basically the same as the linear or unique
references found in many other languages [1, 4, 5, 7, 9, 13, 17, 20]
(but see [11] for how this may diverge). Composing two linear
capabilities A and B in a conjunction A ⊗ B however allows us to
create two linear aliases that access disjoint parts of an object.

A trait whose linearity is declared in conjunction with its compo-
sition, which has been the case in all examples so far, is free to alias
this internally (cf., § 2.3), meaning they are externally unique [13].
The externally unique aggregate contains the subordinate fields of
the linear capability. A trait which is manifestly declared as linear,
knows of its uniqueness and can therefore leverage this knowledge2,
at the price of disallowing internal back-pointers.

Borrowing linear values follow standard rules: the value at the
end of an all linear path x.f.g...h can be temporarily placed on
the stack and reinstated once the stack-frame is popped, as long as
no prefix of the path is accessed during the borrowing (a prefix of
the path could be use to create an unsafe alias of the borrowed value).
Borrowing is denoted by an “S-box” wrapping a type, e.g., S(Pair).
In conjunction with borrowing, linearity may be relaxed to thread,
which allows freely aliasing the value, but not passing it off to any
other threads.

The simplest case of borrowing is when the path of linear values
is a singleton variable x. We call this type of borrowing forward

2 This strong form of uniqueness enables strong updates, type-safe dynamic
re-classification [15], type state [14, 19], etc. This is a direction of future and
on-going ([11]) work.

borrowing, as we are passing a stack-bound variable to another
method or function. Relaxations can be supported in a fine-grained
manned, as exemplified below:

def foo(x:S(linear Fst ⊗ thread Snd)) : void ...

foo(p);

Here, the pair p is passed non-destructively (note the lack of a
consume) to foo() and in the process is unpacked into a linear
Fst part and an aliasable Snd part. The original variable p will be
buried on the stack frame below for the duration of call to foo().

We call borrowing when the path of linear values is longer
than one reverse borrowing. This allows non-destructive reads of
linear fields into stack-bound values. For example, the following
Cell class uses reverse borrowing to return the elem field without
destroying it – which lets the Accessor trait have the read mode.

read trait Accessor<linear T>
require elem : T
def get() : S(T)

return this.elem

trait Mutator<linear T>
require elem:T
def set(e:linear T) : void

this.elem = consume e

class Cell<linear T> = linear Mutator<T> ⊗ Accessor<T>
var elem:T

The trick to sound reverse borrowing is to require the target to be
linear and to prevent multiple borrowings of the same value, e.g., by
disallowing storing result in a variable. Thus, if c is a Cell<Pair>,
we may perform c.get().setFst(42) or foo(c.get()) know-
ing that no other on-going computation will be able to witness the
alias in c.elem before these expressions are fully evaluated and
uniqueness has been restored.

2.5 Composition and Regions
Regions provide a means of dividing an object up into disjoint parts
that can be operated on in parallel. For example, in Deterministic
Parallel Java, each field of a class belongs to a region and methods
are annotated with effects to show which regions they access [2].
Methods with non-overlapping effects can safely be run in parallel.

In KAPPA there are no explicit regions and no effect annotations.
Instead, variable requirements in traits, and trait composition, allows
regions to be inferred. Remember that a trait requires fields and
that fields can be var (mutable) or val (immutable). A safe over-
approximation of a trait’s methods is to assume that they write to all
of the trait’s var fields and read from all of the trait’s val fields. For
example (cf., § 2.1):

– The methods in Fst sees fst as a var field, and can therefore
therefore be assumed to write to this field.

– The method in Get sees cnt as a val field, and can therefore be
assumed to read this field.

Since two traits on opposing sides of a conjunction A ⊗ B may
not share any unprotected mutable state, their mutable fields are
conceptually in different regions. For example, from the composition
Fst ⊗ Snd of the class LinearPair we can derive two disjoint
regions – one for the field fst and one for the field snd. By deriving
effects as above we can see that the methods in one trait only write to
the region derived from that trait, and so two methods from different
traits have disjoint effects and can be run in parallel. This is exactly
the behaviour allowed by capability conjunction.



By reasoning at the level of traits rather than individual methods,
we are checking for interference at a higher level of abstraction. This
gives us the benefits of a full region and effects system, but also lets
us avoid the overhead that comes with annotations.

2.6 Unpacking and a Taste of Fractional Permissions
Fractional permissions [6] enable mediating between a single muta-
ble (full) permission and several read-only (fractional) permissions.
The intuition is that the sum of the fractions should always add
up to a full permission. This allows expressing patterns where a
single thread mutates some object and distributes it to some other
threads which only read it. When all threads are done reading (and
the fractions are reassembled), the original thread can perform a new
update.

In KAPPA there are no explicit fractions or permissions, but
the single writer–multiple readers pattern can be simulated by
forgetting and restoring (parts of) linear capabilities. The capability
linear Inc ⊕ read Get of the class LinearCounter (cf., § 2.1)
conceptually holds the full permission to mutate the counter. By
upcasting the capability to read Get we get a capability that may
be arbitrarily shared, but at the same time we lose the mutating
capability forever.

To be able to restore the full capability, we can temporarily hide
the mutating capability and distribute the safe capability among the
reading threads, and then restore the mutating capability after we
know that all the safe capabilities have gone out of scope. KAPPA
provides a scoped construct for this:

let c = new LinearCounter();
...
bound c as g : S(read Get) in {

finish{ // c is hidden...
async{foo(g)}
async{bar(g)}
async{fr0b(g)}

}
} // ...until g has gone out of scope
c.inc();

With actual fractional permissions it would be possible to reassemble
the full permission in a different location than where it was split up.
To support this in KAPPA we would need some kind of “enumerated
unpacking” to track the number of aliases created. Currently we only
packing and unpacking in different locations for linear capabilities.

In addition to the single writer–multiple readers pattern, KAPPA
also allows multiple disjoint writers (through unpacking of capability
disjunctions) and multiple overlapping writers (through capability
disjunctions that share safe capabilities) to the same object.

3. KAPPA and the Present
In this section we present the current status of the implementation
of KAPPA in the context of the actor language Encore [8]. We also
discuss ongoing work to allow capabilities that use protocols from
lockfree programming to safely share data.

3.1 Encore in a Nutshell
Encore [8] is an object-oriented programming language for paral-
lel and concurrent programming. Encore achieves concurrency by
using active objects – objects with their own (conceptual) thread
of control, communicating asynchronously with each other through
message passing. Encore additionally provides means for pipeline-
style parallelism aimed at big data-style computations [16]. The
KAPPA system is integral to avoiding data-races in Encore.

In Encore, classes are active by default. The following program
will create two active Greeter objects that will print their id ten
times each in non-deterministic order:

class Greeter
id : int
// A constructor method
def init(id : int) : void

this.id = id
def greet() : void

print("Hello, my id is {}", this.id)

class Main
def main() : void {

let g1 = new Greeter(1);
let g2 = new Greeter(2);
for i in [1..10] {

g1.greet();
g2.greet();

}
}

Calling a method on an active object immediately returns a future
which will be fulfilled with the return value of the method call
when the active object has processed the message. Here is an
implementation of an active counter class:

class ActiveCounter
cnt : int
def inc() : void

this.cnt = this.cnt + 1
def get() : int

this.cnt

class Main
def main() : void {

let c = new ActiveCounter();
c.inc();
c.inc();
let v = c.get(); // v : Fut int
print(get v); // Blocks until fulfillment, then prints 2

}

Passive objects (without its own thread of control) are created from
passive classes. These objects behave just like regular objects, with
synchronous method calls:

passive class Counter
cnt : int
def inc() : void

this.cnt = this.cnt + 1
def get() : int

this.cnt

class Main
def main() : void {

let c = new Counter();
c.inc();
c.inc();
let v = c.get(); // v : int
print(v); // Prints 2

}

3.2 KAPPA and Encore
As all active objects are running in parallel, every shared passive
object is a potential data-race waiting to happen. We remedy this by
integrating KAPPA with the passive classes of Encore. As a first step,
we have implemented support for linear, read and subordinate ca-
pabilities and their composition. As active objects already provide a
way to serialise concurrent accesses to data, we have so far excluded



locked capabilities. Passive objects shared between active objects
must therefore be read-only or have non-overlapping capabilities so
that different threads access disjoint parts of the object.

As with most actor systems, Encore’s active objects are opaque
and should encapsulate their representation. With KAPPA we can
enforce this by using subordinate capabilities for the representation
of an active object, meaning these objects cannot be passed outside
of the aggregate of the active object. By letting subordinate be the
default mode, mode annotations on traits will only be necessary for
objects that will be shared between active objects.

In ongoing work, we are looking at a closer integration of
KAPPA and Encore by replacing active classes by an active mode on
capabilities. This allows using the same traits to create active data as
passive data. For example, the active counter class from § 3.1 could
be declared as:

class ActiveCounter = active Inc ⊕ active Get
cnt : int

It is interesting to ponder the difference in semantics between
types such as active ⊕ active and active ⊗ active. The natural
interpretation of first type seems to be different traits constructing an
actor, while the latter opens up for actors with parallel capabilities,
and possibly several message queues. Similarly, the type locked ⊗
active or locked ⊕ active could denote an actor with a separate
“priority channel”, that stops the actor between messages to let some
other thread access its state. The type linear ⊕ active could be
used for an actor whose linear capability contains the initialisation
methods, which can later be forgotten (using an upcast), gaining the
ability to alias and share the reference across threads. Working out
similar details for other combinations of capabilities is a direction
for future work.

3.3 KAPPA and Optimistic Concurrency Control
An alternative to wrapping accesses in locks is to use some form
of optimistic concurrency control. Software transactional memory
[21] should be easy to integrate with KAPPA on the surface – an
atomic capability wraps accesses in transactions, and rolls back on
conflicts. Another form of optimistic concurrency is found in lock-
free programming, which uses compare-and-swap (CAS) or similar
atomic primitives to avoid blocking and handle data races.

In ongoing work we have explored a type system design for
lock-free programming in KAPPA based on CAS, which requires a
principled relaxation of linear capabilities to allow several threads
to operate on a “linear” value concurrently. Our key change to make
this possible is the separation of ownership and reference – an object
can be arbitrarily aliased as long as at most one of the references
can access the linear resources of the object. This way ownership
remains linear but can be transferred between aliases.

By confining these relaxed linear references to lockfree capa-
bilities, this extension can be used together with the rest of KAPPA
without requiring any changes to the existing type system. The ex-
tended KAPPA type system guarantees data-race freedom, even in
the presence of lock-free data structures such as stacks, queues and
lists [11].

4. KAPPA and the Future
Among the most important future work are case studies verifying
the practical usefulness of KAPPA. This is something we indend to
do as soon as our implementation reaches a sufficiently stable state.
In this section we look at where the development on KAPPA is going,
and discuss some of our ongoing projects.

4.1 The Grand Scheme of Things
The different kinds of capabilities can be placed in a hierarchy as in
Figure 2. The three top-level categories are the exclusive capabilities,

Capability

Shared

Atomic Immutable

Safe Unsafe

Lock-Free Active

Subordinate

Optimistic Pessimistic Oblivious

Thread

Locked Read

Exclusive

Linear

Figure 2. Capability hierarchy.

i.e., the linear and thread capabilities which are always exclusive
to a single thread; the shared capabilities, i.e., all the capabilities
that may be aliased across threads; and the subordinate capabilities
which rely on getting protection from some other capability.

The shared capabilities are categorised into the safe and unsafe
capabilities, and the safe capabilities may further be grouped de-
pending on the kind of concurrency control they provide. The op-
timistic capabilities use techniques where threads access the same
data without synchronisation following some protocol that allows
conflicts to be resolved, e.g., using transactional memory or lock-
free programming patterns (cf., § 3.3). The pessimistic capabilities
serialise all accesses, e.g., by using locks or by wrapping state in
an actor whose message queue decides the order of operations. The
oblivious capabilities do not need any dynamic concurrency control
because they only provide non-racy operations. These are the read
and immutable (“deeply read”) capabilities.

A lot of the future work on KAPPA concerns extending this
hierarchy with new kinds of capabilities and reasoning about their
interactions and compositions. Some of the compositions mentioned
in this presentation are straightforward, but it is for example not
obvious what it would mean to compose a locked capability with
an atomic capability that uses transactional memory. The hierarchy
also suggests a kind of bounded polymorphism between the different
modes. Abstracting over the safe modes (using a safe annotation)
gives a sort of polymorphic concurrency control – code that safely
uses some data, agnostic to the kind of concurrency control provided
by the underlying capability.

An alternative view of the unsafe category is one where parts
of a program is proven data-race free by some other means (they
could be thought of as a verified capability). This way, Kappa could
interface with (possibly external) modules verified by some other
technique, as long as this technique does not require changes to
the rest of the KAPPA program. Currently, we allow using unsafe
capabilities as long as all accesses are synchronized via locking [12],
but any other means of achieving data-race freedom would work.

4.2 Arrays
Operations on arrays is a natural thing to want to parallelise, and
we are currently extending KAPPA to handle arrays. Just as with the
other capabilities we are interested in expressing aliasing patterns
of arrays that are safe from data-races, either because different
threads are known to access disjoint parts of the array, or because
the overlapping operations are safe to perform in parallel.

Analogous to how a A ⊗ B may be split into its constituents
since A and B do not share mutable fields, an array can be thought of
as a conjunction of capabilities to access each index of the array.
The simplest horizontal split takes an array [e0, . . . , en−1] and
splits it into two arrays [e0, . . . , ek−1], [ek, . . . , en−1] which may
be operated on in parallel. Implementation-wise, these two arrays



are aliases where accesses to the latter one are implicitly offset by k.
We are also looking at more advanced splitting, such as array slices
and stencils.

If the type of the elements of an array is a conjunction A ⊗ B,
an array of type [A⊗B] may be split vertically into two arrays of
type [A] and [B]. Since the rules of conjunction allows A and B to
be operated on in parallel, the elements of the two aliasing arrays
can be accessed concurrently. However, since two threads may be
accessing the same indices, the arrays themselves must be turned
immutable for the duration of the split. Combinations of horizontal
and vertical splitting are possible.

4.3 Value Types
Many functional languages don’t need to worry about data-races
since they use value semantics for all data, copying values on updates
rather than passing them around by reference (which is prone
to data-races). In an object-oriented setting, reference semantics
often comes more naturally, but there are times when using value
semantics makes sense (for example strings in Java and Encore).
Other languages, for example C and C++, allow programmers to
chose between value semantics and reference semantics for objects
and structs. Value semantics also avoid pointer indirection, which
allows certain memory optimisations.

KAPPA facilitates trait-based reuse, and we would like to be
able to express value types using the same mechanisms. For this
we are envisioning another safe mode, the value mode, which
denotes a capability that is safe to share across threads because
any modifications made to it will use value semantics. For example,
consider a value semantics version of the counter from § 2.1:

class ValueCounter = value Inc ⊕ read Get
var cnt : int
...

let c = new ValueCounter(5);
finish {

async{c.inc()} // Copy the counter before updating
async{print(c.get())} // Will always print 5

}
print(c.get()); // Will always print 5

Calling inc on c first copies the counter and then updates this
copy. Calling get leaves the object unchanged and incurs no extra
copying. Calling a mutating method (e.g., a method from a non-
read capability) on a value capability could be understood as the
following desugaring:

c.inc();
→
let c’ = c.clone();
c’.inc();
... // substitute c’ for c in this code

Interestingly, the depth of the cloning of value capabilities depends
on the types of the fields in the underlying objects. All subordinate
and linear objects would need to be deeply cloned, as sharing them
between copies of an aggregate would be racy (subordinate objects
assume that they are encapsulated in a single object; linear objects
assume that there is at most one reference to them). Safe capabilities
on the other hand need only be copied by reference as accesses to
these are free from data-races.

To simplify reasoning about which objects might be cloned under
the hood, a reasonable constraint is to require that a trait with the
value mode only contains fields of safe capabilities, which would not
need cloning (except for nested value capabilities, but these could
be cloned “on demand” depending on which parts of the nested state
was mutated). This is similar to how traits with the read mode can
only contain safe capabilities in val fields.

4.4 Ownership Declassification
In ownership types, direct references to internal objects must be
banned to protect encapsulation. In KAPPA, encapsulation is a means
to reason about the protection offered by a dominating capability.
However, in the spirit of ownership declassification [3, 18] we might
consider returning a pointer to a subordinate capability outside of
its dominating capability by changing its mode from subordinate
to a safe one.

As an example, imagine a locked linked list capability with
subordinate links. We may return an alias to a link in the list to
outside of the list, for example to some iterator object, if the mode of
the alias’ type is changed to locked. Dynamically, method calls on
this alias will be wrapped in lock/unlock instructions for the same
lock as the list. This avoids data-races, while allowing direct access
to the representation of the list. Note that internal accesses do not
need to grab the lock, because the internal views of the object is still
subordinate.

Only the dominator may “declassify” a subordinate object into
a dominator. Since a subordinate object does not know the mode of
its dominator, it cannot declassify itself.

5. Summary
The main insight towards previous work that we have gotten from de-
veloping KAPPA is that many systems can be closely approximated
by thinking about the flow of (read/write) permissions: ownership
confines the flow of permissions to some aggregate, immutability
removes all the write permissions, uniqueness prohibits duplication
of permissions, external uniqueness allows duplication permissions
within some aggregate, fractional permissions allows trading write
permissions for several read permissions, etc.

Kappa works at the granularity of traits, but each trait conceptu-
ally holds a set of read or write permissions to the fields of the trait.
Checking interference and controlling the flow of permissions on
a higher level of abstraction reduces the annotation overhead and
lets us mimic the permission structure of existing systems for alias
control by using different combinations of capabilities and modes.

We are standing on the shoulders of giants (e.g., [1–7, 14, 15, 17–
22]). With an implementation underway and with many interesting
extensions on the horizon, KAPPA will provide a unified system that
examines and evaluates how techniques for alias management and
different flavours concurrency control can work together in a way
that is both versatile and powerful.
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