
Optional Typing in Dart:
Purity vs. Practice
Gilad Bracha
Google

Optional Types

A type system is optional if

It has no effect on the run time semantics

It is syntactically optional

Optional Types

A type system is optional if

It has no effect on the run time semantics

It is syntactically optional

Runtime dependent on Type
System

Type RulesSemantics

Runtime not dependent on
Type System

Type RulesSemantics

Dart Types Overview

Nominal

Interface-based

Unsound for multiple reasons

Dart Types Overview

Two Modes:

Checked ~ Gradual. Check runtime type against
declaration at assignment, parameter passing,
function return

Production ~ Optional. Type annotations have no
effect.

Checked Mode undermines
Optional Typing

Code will be used in both checked and production
modes

Checked mode gives annotation meaning

Hence annotations are not truly optional

But checked mode is very useful

Controlling Checked Mode

One needs finer grain control over checked mode

Ideally, one could choose on a library or method
basis whether to do the dynamic checks

Checked mode should be a feature of the tooling, not
the language

Tangent: PX not PL

Programming experience (PX) is what matters

PX holistically integrates language, tools, libraries,
performance etc.

Separating PL is a very useful level of abstraction, but
one needs to know when to do.

Pluggable Types

If type systems are optional, one can treat them as
plug ins
Different type systems for different needs, e.g.:

Aliasing/Ownership/Capability tracking
Traditional types

Pluggable Types in Dart?

No. Type rules are in the language spec.

Reason: worries about fragmentation, interop

Yet pluggability arose in practice, in “strong-mode”,
and its subsets, which we’ll discuss later

Soundishness

Dart types are unsound in at least 3 ways:

Covariant generics

Implicit downcasting on assignment

The two above interact in odd function rules

Library privacy (ADTs) vs. interface types

Type Inference

Programmers want type inference

They don’t want to have to write types because they
hate typing (with their fingers)

They don’t even want to read types when the types
are obvious

var i = 0; // expect i to be inferred as int

Type System dependent on
Inference

Type Checking Type Inference

Type System not dependent
on Inference

Type Checking Type Inference

Optional Typing Requires
Smart, Integrated Tools

Checked mode control

Type checking selectively

Using metadata to disable undesired warnings

Object>>hash

Object>>hash maltyped

Invoking the Typechecker

Type Errors

Type Annotations Create
Expectations of Behavior

int i; // people expect i to be initialized to 0

C Syntax Aggravates

Given

var i;
engineers think var is a type meaning dynamic.

Rational Syntax is Resisted

var i: int := 0;

Complaint is that this is too verbose, too unfamiliar

Types are Knowledge

Knowledge is Power

Implementors Lust for
Power

Especially true when classic VM technology is
restricted, as when targeting the web or iOS

Size is the Big Problem

Size of download on the web (more due to JS parse
time than actual download)

On iOS, no JIT, so we use AOT compilation to
machine code, which gets big

IOT - devices are super small

Size is the Big Problem

In both web and mobile (even Android) non-native
platform is at huge disadvantage; always a second-
class citizen

The Return of Pluggable
Types?

Fully type programs prior to deployment

Check programs under sound rules

Capitalize on types in implementation

The Return of Pluggable
Types?

Dart’s strong mode is somewhat similar

Check programs under sound-ish rules

Some teams define their own subsets

One has to implement both behaviors :-). But really just
like -Oxxx

Liveness
Dart now allows code to be changed and reloaded
without restarting

Even if your code is full type safe, the pre-existing heap
and stack may not conform

If you rely on the types … Boom!

So you need a mode that does not rely on types
anyway

Conclusion

Easier for pre-existing language; core language rules
fixed, will keep you honest

Hard to retrofit into conventional design

Requires tight control over entire programming
experience; not just language, but tools

